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a b s t r a c t

We develop a high order finite difference numerical boundary condition for solving hyper-
bolic conservation laws on a Cartesian mesh. The challenge results from the wide stencil of
the interior high order scheme and the fact that the boundary intersects the grids in an
arbitrary fashion. Our method is based on an inverse Lax-Wendroff procedure for the
inflow boundary conditions. We repeatedly use the partial differential equation to write
the normal derivatives to the inflow boundary in terms of the time derivatives and the tan-
gential derivatives. With these normal derivatives, we can then impose accurate values of
ghost points near the boundary by a Taylor expansion. At outflow boundaries, we use
Lagrange extrapolation or least squares extrapolation if the solution is smooth, or a
weighted essentially non-oscillatory (WENO) type extrapolation if a shock is close to the
boundary. Extensive numerical examples are provided to illustrate that our method is high
order accurate and has good performance when applied to one and two-dimensional scalar
or system cases with the physical boundary not aligned with the grids and with various
boundary conditions including the solid wall boundary condition. Additional numerical
cost due to our boundary treatment is discussed in some of the examples.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we develop a high order boundary treatment for solving strongly hyperbolic conservation laws with high
order finite difference methods on a Cartesian mesh. In a computational domain with complex geometries, a Cartesian mesh
makes the numerical method efficient and easy to implement compared with boundary fitted structured or unstructured
meshes. However, there are two kinds of difficulties imposing inflow boundary conditions. First, a high order interior scheme
needs a suitable treatment for several ghost points near the boundary because of the wide numerical stencil. Secondly, the
grid points are usually not located on the physical boundary when using a Cartesian mesh. In other words, the boundary
intersects the grids in an arbitrary fashion. In finite volume methods, this leads to a severe time step restriction. The so-called
h-box method is developed to overcome this problem, see [1] and the references therein. In solving compressible inviscid
Euler equations, the most popular way to impose the no-penetration boundary condition at solid walls is the reflection tech-
nique, where ghost points are added behind the wall. All interior solution components are reflected symmetrically to values
of ghost points except for the normal velocity whose sign is reversed. This method works well if the grid points are symmet-
rically located with respect to the wall and leads to large errors otherwise. An accurate implementation of solid wall
. All rights reserved.
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boundary conditions in curved geometries is developed for discontinuous Galerkin methods on unstructured, straight-sided
element meshes in [12].

A Cartesian embedded boundary method based on the finite difference formulation is developed to solve the wave equa-
tion with Dirichlet or Neumann boundary conditions in [9–11] and hyperbolic conservation laws in [17]. The technique used
in [17] is formally second order accurate with an explicit time step determined by the grid size away from the boundary. It is
essentially based on a three point interior scheme so that only points just outside the boundary are ghost points, which are
imposed by extrapolation. The feasibility and effectiveness to generalize this approach to higher order remain to be
demonstrated.

The idea of the procedure developed in this paper comes from [7], in which a Lax-Wendroff type boundary condition pro-
cedure is introduced for solving static Hamilton–Jacobi equations with a third order method. Later, Xiong et al. extend it to
fifth order for the same type of problems in [20]. This approach is based on repeatedly using the partial differential equation
(PDE) to write the normal derivatives to the inflow boundary in terms of the tangential derivatives of the given boundary
condition. With these normal derivatives, we can obtain accurate values of ghost points by a Taylor expansion from a point
located on the boundary.

In this paper, we systematically extend this procedure to solve time dependent hyperbolic conservation laws. The differ-
ence with [7,20] mainly relies on three points. First, for time dependent problems, our boundary treatment procedure is
in essence repeatedly using the PDE to convert normal spatial derivatives to tangential and time derivatives of the given
boundary condition. Secondly, in systems of conservation laws, the inflow and outflow boundary conditions are coupled.
As a result, special care must be taken for imposing outflow boundary conditions. We use high order Lagrange extrapolation
or least squares extrapolation if the solution is smooth. In the presence of shocks near the outflow boundary, we develop a
weighted essentially non-oscillatory (WENO) type extrapolation to prevent oscillations and maintain accuracy. Finally, this
method should work well for solid wall boundary conditions. Our boundary treatment procedure, which uses repeatedly the
PDE to convert normal spatial derivatives to tangential and time derivatives of the given boundary condition, is in some
sense an inverse to the usual Lax-Wendroff procedure [13], in which the PDE is repeated used to convert time derivatives
to spatial derivatives when discretizing the PDE in time with high order accuracy. We therefore refer to our method as
the inverse Lax-Wendroff procedure.

This paper is organized as follows. In Section 2, we first give an overview of the discretization of the problem. Then we
illustrate the idea of the inverse Lax-Wendroff procedure by one-dimensional scalar conservation laws. We will see a need
for robust extrapolation if there is a shock near the outflow boundary. We develop a WENO type extrapolation for this pur-
pose. The linear stability of our numerical boundary condition is shown afterwards. The method for one-dimensional scalar
equation is then generalized to one-dimensional systems and further to two-dimensional problems. In Section 3, a variety of
numerical examples are provided to demonstrate the effectiveness and generality of our approach. Concluding remarks are
given in Section 4.

2. Scheme formulation

We consider strongly hyperbolic conservation laws for U ¼ Uðx; y; tÞ 2 R2
Ut þ FðUÞx þ GðUÞy ¼ 0 ðx; yÞ 2 X; t > 0;

Uðx; y;0Þ ¼ U0ðx; yÞ ðx; yÞ 2 �X;

(
ð2:1Þ
on a bounded domain X with appropriate boundary conditions prescribed on oX at time t. We assume X is covered by a
uniform Cartesian mesh Xh = {(xi,yj): 0 6 i 6 Nx, 0 6 j 6 Ny} with mesh size Dx = Dy. The semi-discrete approximation of
(2.1) is given by
d
dt

U i;jðtÞ ¼ �
1
Dx

bF iþ1=2;j � bF i�1=2;j

� �
� 1

Dy
bG i;jþ1=2 � bG i;j�1=2

� �
; ð2:2Þ
where bF iþ1=2;j and bG i;jþ1=2 are numerical fluxes.
We use a third order total variation diminishing (TVD) Runge–Kutta method [16] to integrate the system of ordinary dif-

ferential equations (ODEs) (2.2) in time. For ease of notations, we suppose a system of initial value problems of ODEs is writ-
ten as
ut ¼ LðuÞ:
The third order TVD Runge–Kutta method is given by
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3
4

un þ 1
4

uð1Þ þ 1
4

DtLðuð1ÞÞ;

unþ1 ¼ 1
3

un þ 2
3

uð2Þ þ 2
3

DtLðuð2ÞÞ:

ð2:3Þ
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To make the accuracy in time compatible with the accuracy in space, we take Dt ¼ OðDx
s
3Þ if the space discretization is of

order s, when performing the accuracy tests. Other time discretization techniques, such as the various strong stability pre-
serving Runge–Kutta or multistep methods [4], could of course be used as well.

Special care must be taken when we impose time dependent boundary conditions in the two interior stages of the Runge–
Kutta method (2.3). Suppose we have a time dependent boundary condition g(t). The traditional match of time
un � gðtnÞ;
uð1Þ � gðtn þ DtÞ;
uð2Þ � gðtn þ Dt=2Þ;
decreases the accuracy to second order as pointed out in [2]. It is shown in [2] that for hyperbolic systems (2.1) the following
match of time maintains the third order accuracy of (2.3)
un � gðtnÞ;
uð1Þ � gðtnÞ þ Dtg0ðtnÞ;

uð2Þ � gðtnÞ þ
1
2

Dtg0ðtnÞ þ
1
4

Dt2g00ðtnÞ:
ð2:4Þ
For simplicity, we denote the boundary conditions for all stages at t = tn by g(tn), although g(tn) is actually different for each
stage according to (2.4).

For definiteness, we use the fifth order finite difference WENO scheme with the Lax-Friedrichs flux splitting [8] to form
the numerical fluxes bF iþ1=2;j and bG i;jþ1=2 in (2.2) although our method is independent of the interior scheme. The fifth order
WENO scheme requires a seven point stencil in both x and y directions, which is much wider compared with low order
schemes. Near oX where the numerical stencil is partially outside of X, up to three ghost points are needed in each direction.
We concentrate on how to define the values of Ui,j at ghost points in the rest of the paper.

2.1. One-dimensional scalar conservation laws

To best illustrate the idea of the inverse Lax-Wendroff type procedure, we use 1D scalar conservation laws as an example
ut þ f ðuÞx ¼ 0 x 2 ð�1;1Þ; t > 0;
uð�1; tÞ ¼ gðtÞ t > 0;
uðx;0Þ ¼ u0ðxÞ x 2 ½�1;1�:

8><>: ð2:5Þ
We assume f 0(u(�1,t)) P a > 0 and f 0(u(1,t)) P a > 0 for t > 0. This assumption guarantees the left boundary x = �1 is an
inflow boundary where a boundary condition is needed and the right boundary x = 1 is an outflow boundary where no
boundary condition is needed.

Let us discretize the interval (�1,1) by a uniform mesh
�1þ Dx=2 ¼ x0 < x1 < � � � < xN ¼ 1� Dx=2: ð2:6Þ
Notice that both x0 and xN are not located on the boundary, which is chosen this way on purpose since it is usually not pos-
sible to align boundary with grid points in a two-dimensional domain with complex geometries. At the inflow boundary
x = �1, a Taylor expansion of order s � 1 gives
uðxj; tnÞ ¼
Xs�1

k¼0

ðxj þ 1Þk

k!

@ku
@xk

�����
x¼�1;t¼tn

þ OðDxsÞ;
for j = �1, �2, �3. Hence a sth order approximation of the values uj at the ghost points is
uj ¼
Xs�1

k¼0

ðxj þ 1Þk

k!

@ku
@xk

�����
x¼�1;t¼tn

; j ¼ �1;�2;�3: ð2:7Þ
Here we suppress the tn dependence on the left hand side. We already have u(�1,tn) = g(tn). To obtain the spatial derivatives,
we utilize the PDE
ut þ f 0ðuÞux ¼ 0
and evaluate it at x = �1, t = tn. We have
uxð�1; tnÞ ¼ �
utð�1; tnÞ

f 0ðuð�1; tnÞÞ
¼ � g0ðtnÞ

f 0ðgðtnÞÞ
;

where f 0(g(tn)) is bounded away from zero by the assumption that x = �1 is an inflow boundary. Differentiating the PDE with
respect to time yields
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utt þ f 00ðuÞutux þ f 0ðuÞuxt ¼ 0: ð2:8Þ
The term uxt can be written as
uxt ¼ ðutÞx ¼ �ðf 0ðuÞuxÞx ¼ �f 00ðuÞu2
x � f 0ðuÞuxx:
Substituting it into (2.8) we obtain an equation for uxx
utt þ f 00ðuÞutux � f 0ðuÞf 00ðuÞu2
x � f 0ðuÞ2uxx ¼ 0: ð2:9Þ
Solving (2.9) for uxx and evaluating it at x = �1, t = tn, we have
uxxð�1; tnÞ ¼
g00ðtnÞ þ f 00ðgðtnÞÞg0ðtnÞuxð�1; tnÞ � f 0ðgðtnÞÞf 00ðgðtnÞÞu2

x ð�1; tnÞ
f 0ðgðtnÞÞ2

¼ f 0ðgðtnÞÞg00ðtnÞ � 2f 00ðgðtnÞÞg0ðtnÞ2

f 0ðgðtnÞÞ3
:

Following the same procedure, we can obtain values of @ku
@xk jx¼�1;t¼tn

; k ¼ 1; . . . ; s� 1.
The idea of converting time derivatives to spatial derivatives by repeatedly using the PDE comes from the original Lax-

Wendroff scheme [13]. Since we convert spatial derivatives to time derivatives instead, our method is called the inverse
Lax-Wendroff procedure. We remark that this procedure is independent of the interior scheme and the location of the
boundary. The time derivatives can be obtained by either using the analytical derivatives of g(t) if available or numerical dif-
ferentiation. In the case of shocks going through the boundary, g(t) is discontinuous. The stencil used for numerical differ-
entiation should not contain any discontinuity, e.g. an essentially non-oscillatory (ENO) procedure [6] or a weighted ENO
(WENO) procedure [8] can be used for this numerical differentiation.

At the outflow boundary x = 1, extrapolation of appropriate order is used. The sth order extrapolation is given by
Xs

k¼0

s

k

� �
ð�1Þkuj�k ¼ 0; j ¼ N þ 1;N þ 2;N þ 3: ð2:10Þ
For example, the fifth order extrapolation is
uj ¼ uj�5 � 5uj�4 þ 10uj�3 � 10uj�2 þ 5uj�1; j ¼ N þ 1;N þ 2;N þ 3:
An equivalent way to do the extrapolation is to use a Taylor expansion
uj ¼
Xs�1

k¼0

ðxj � 1Þk

k!
u�ðkÞ; ð2:11Þ
where u*(k) is a (s � k)th order approximation of @ku
@xk jx¼1;t¼tn

. Notice that (2.11) is consistent with (2.7) which is useful in the
system case discussed later. If u is smooth near the boundary, u*(k) can be easily obtained by
u�ðkÞ ¼ dkps�1ðxÞ
dxk

�����
x¼1

; ð2:12Þ
where ps�1(x) is a Lagrange polynomial of degree s � 1 satisfying ps�1(xN�i) = uN�i, i = 0,. . .,s � 1.
When a shock goes out of the boundary, there are not enough points between the shock and the boundary for high order

extrapolation at a particular time. In this situation, high order extrapolation may lead to a severe oscillation near the shock.
To prevent this from happening, we would like to have a lower order accurate but more robust extrapolation. The WENO
type extrapolation is developed for this purpose.
2.2. One-dimensional WENO type extrapolation

Assume that we have a stencil of three points x0 = 0, x1 = Dx, x2 = 2Dx with point values uj at xj, j = 0, 1, 2. We aim to obtain
a (3 � k)th order approximation of dku

dxk jx¼�Dx=2, which is denoted by u*(k), k = 0, 1, 2. We have three candidate substencils given
by
Sr ¼ fx0; . . . ; xrg; r ¼ 0;1;2:
On each substencil Sr, we can easily construct a Lagrange polynomial pr(x) of degree r
p0ðxÞ ¼ u0;

p1ðxÞ ¼
u1 � u0

Dx
xþ u0;

p2ðxÞ ¼
u0 � 2u1 þ u2

2Dx2 x2 þ�3u0 þ 4u1 � u2

2Dx
xþ u0:
Suppose u(x) is smooth on S2, u*(k) can be extrapolated by
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u�ðkÞ ¼
X2

r¼0

dr
dkprðxÞ

dxk

�����
x¼�Dx=2

;

where d0 = Dx2, d1 = Dx, d2 = 1 � Dx � Dx2.
We now look for WENO type extrapolation in the form
u�ðkÞ ¼
X2

r¼0

xr
dkprðxÞ

dxk

�����
x¼�Dx=2

; ð2:13Þ
where xr are the nonlinear weights depending on the values of uj. In the case that u(x) is smooth in S2, we would like to have
x0 ¼ OðDx2Þ;
x1 ¼ OðDxÞ;
x2 ¼ 1�x0 �x1:

ð2:14Þ
This implies (2.13) is (3 � k)th order accurate. Following the idea of the usual WENO procedure in [8], the nonlinear weights
xr are chosen to be
xr ¼
arP2
s¼0as
with
ar ¼
dr

ð�þ brÞ
2 ;
where � = 10�6 and br are the smoothness indicators, which are determined by
b0 ¼ Dx2;
b1 ¼
X2

l¼1

Z 0

�Dx
Dx2l�1 dl

dxl
p1ðxÞ

 !2

dx ¼ ðu1 � u0Þ2; ð2:15Þ

b2 ¼
X2

l¼1

Z 0

�Dx
Dx2l�1 dl

dxl
p2ðxÞ

 !2

dx ¼ ð61u2
0 þ 160u2

1 þ 74u0u2 þ 25u2
2 � 196u1u0 þ 124u1u2Þ=12: ð2:16Þ
We next show that (2.14) is achieved by this choice of br. Taylor expansion of (2.15) and (2.16) at x = 0 gives
b1 ¼ u02Dx2 þ u0u00Dx3 þ 1
4

u002 þ 1
3

u0u000
� �

Dx4 þ OðDx5Þ; ð2:17Þ

b2 ¼ u02Dx2 � u0u00Dx3 þ 4
3

u002 � 5
3

u0u000
� �

Dx4 þ OðDx5Þ: ð2:18Þ
We omit � in the expression of ar and do the following estimates with the assumption that C1 = (u0)4 – 0.
a0 ¼
Dx2

Dx4 ;

a1 ¼
Dx

Dx4ðC1 þ OðDxÞÞ ¼
Dx
Dx4

1
C1
þ OðDxÞ

� �
;

a2 ¼
1þ OðDxÞ

Dx4

1
C1
þ OðDxÞ

� �
;

x0 ¼
Dx2

Dx2 þ Dx 1
C1
þ OðDxÞ

� �
þ ð1þ OðDxÞÞ 1

C1
þ OðDxÞ

� � ¼ Dx2

1
C1
þ OðDxÞ

¼ C1Dx2 þ OðDx3Þ;
x1 ¼
Dx 1

C1
þ OðDxÞ

� �
1

C1
þ OðDxÞ

¼ Dxþ OðDx2Þ:



S. Tan, C.-W. Shu / Journal of Computational Physics 229 (2010) 8144–8166 8149
If S1 contains a discontinuity, we have b1 = O(1) and b2 = O(1). u*(0) reduces to a first order approximation since
a0 ¼
1

Dx2 ;

a1 ¼ OðDxÞ;
a2 ¼ Oð1Þ;

x1 ¼
OðDxÞ

1
Dx2 þ OðDxÞ þ Oð1Þ

¼ OðDx3Þ;

x2 ¼
Oð1Þ

1
Dx2 þ OðDxÞ þ Oð1Þ

¼ OðDx2Þ:
Notice that as Dx ? 0 the weights assigned to the non-smooth stencils S1 and S2 vanish in a rate of O(Dx3) and O(Dx2),
respectively. If only S2 contains a discontinuity, we have b2 = O(1). u*(0) is a second order approximation since
a0 ¼
1

Dx2 ;

a1 ¼
1

Dx3

1
C1
þ OðDxÞ

� �
;

a2 ¼ Oð1Þ;

x0 ¼
1

Dx2

1
Dx2 þ 1

Dx3
1

C1
þ OðDxÞ

� �
þ Oð1Þ

¼ C1Dxþ OðDx2Þ;

x2 ¼
Oð1Þ

1
Dx2 þ 1

Dx3
1

C1
þ OðDxÞ

� �
þ Oð1Þ

¼ C1Dx3 þ OðDx4Þ:
If u0 = 0 but u00 – 0, then (2.17) and (2.18) reduce to
b1 ¼
1
4

u002Dx4 þ OðDx5Þ;

b2 ¼
4
3

u002Dx4 þ OðDx5Þ:
The above estimates can be done in a similar fashion. We only show (2.14) here. Setting C2 = (u00)4, we readily check
a0 ¼
Dx2

Dx4 ;

a1 ¼
Dx

1
16 C2Dx8 þ OðDx9Þ

¼ Dx
Dx8

16
C2
þ OðDxÞ

� �
;

a2 ¼
1þ OðDxÞ

Dx8

9
16C2

þ OðDxÞ
� �

;

x0 ¼
Dx2

Dx2 þ Dx
Dx4

16
C2
þ OðDxÞ

� �
þ 1þOðDxÞ

Dx4
9

16C2
þ OðDxÞ

� � ¼ 16C2

9
Dx6 þ OðDx7Þ;

x1 ¼
Dx
Dx4

16
C2
þ OðDxÞ

� �
Dx2 þ Dx

Dx4
16
C2
þ OðDxÞ

� �
þ 1þOðDxÞ

Dx4
9

16C2
þ OðDxÞ

� � ¼ 256
9

Dxþ OðDx2Þ:
2.3. Linear stability

In this section, we prove the stability of our numerical boundary conditions for linear wave equations according to the
theory of Gustafsson et al. [5] (henceforth GKS). For semi-discrete schemes, the GKS stability is studied in Strikwerda
[18]. We use Strikwerda’s procedure as a validation tool here. We consider quarter plane problems
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ut þ ux ¼ 0 x 2 ð0;þ1Þ; t > 0;
uð0; tÞ ¼ gðtÞ ¼ 0 t > 0;
uðx;0Þ ¼ u0ðxÞ x 2 ½0;þ1Þ;

8><>: ð2:19Þ
and
ut � ux ¼ 0 x 2 ð0;þ1Þ; t > 0;
uðx;0Þ ¼ u0ðxÞ x 2 ½0;þ1Þ;

�
ð2:20Þ
for inflow boundary conditions and outflow boundary conditions, respectively. The stability of each individual case insures
the stability of our method on a bounded domain. We assume the dissipative semi-discrete interior scheme has the form
duj

dt
¼ 1

Dx

Xp

i¼�r

aiujþi; j P 0: ð2:21Þ
For example, the fifth order WENO scheme with linear weights applied to (2.19) reads
duj

dt
¼ 1

Dx
1

30
uj�3 �

1
4

uj�2 þ uj�1 �
1
3

uj �
1
2

ujþ1 þ
1

20
ujþ2

� �
; j P 0: ð2:22Þ
To solve (2.19), we use the inverse Lax-Wendroff type procedure to impose the inflow boundary condition by
um ¼ 0; m ¼ �1; . . . ;�r: ð2:23Þ
An eigenvalue problem is formed by assuming a solution of the form u(xj,t) = uje
/t. The resolvent equation for (2.21) is
Dx/uj ¼
Xp

i¼�r

aiujþi:
To solve this difference equation, we set uj = jju0 and obtain the characteristic equation
Dx/ ¼
Xp

i¼�r

aiji: ð2:24Þ
For Re (/) > 0, we assume ji, i = 1, . . .,q, are all the distinct roots of (2.24) which satisfies jjij < 1, each with multiplicity ci. A
general candidate eigensolution has the form
uj ¼
Xq

i¼1

Xci

k¼1

ai;kjk�1ðjið/ÞÞj:
The boundary condition (2.23) yields a linear system of equations for ai,k
Xq

i¼1

Xci

k¼1

mk�1jm
i ai;k ¼ 0; m ¼ �1; . . . ;�r: ð2:25Þ
Notice that (2.25) is a square system since
Xq

i¼1

ci ¼ r:
Denoting the coefficient matrix by E, it can be shown, by elementary column operations, that E reduces to a generalized Van-
dermonde matrix. Thus
det E ¼ C
Yq

i¼1

jqi
i

" # Y
16i<j6q

ji � jj
� 	cicj

" #
;

where C is a constant and qi are integers. Since ji are distinct, detE – 0. Therefore, there are no nontrivial eigensolutions and
our semi-discrete scheme (2.21) with boundary condition (2.23) is stable.

For the outflow boundary condition in (2.20), we can show that the semi-discrete problem (2.21) with the extrapolation
(2.10) is stable for all s. The proof is essentially covered in [3] where a fully discrete scheme is analyzed.

We finally remark that the time step restriction of solving the system of ODEs (2.2) with our boundary treatment is not
more severe than the pure initial value problem according to our computational experience. The standard CFL conditions
determined by the interior schemes are used in the numerical examples in Section 3.

2.4. One-dimensional systems

We consider 1D compressible Euler equations
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Ut þ FðUÞx ¼ 0; x 2 ð�1;1Þ; t > 0;
where the conservative variables
U ¼
U1

U2

U3

0B@
1CA ¼ q

qu

E

0B@
1CA
and the flux
FðUÞ ¼

U2

ðc� 1ÞU3 þ 3�c
2

U2
2

U1

cU3 � c�1
2

U2
2

U1

� �
U2
U1

0BBB@
1CCCA ¼

qu

qu2 þ p

uðEþ pÞ

0B@
1CA;
with appropriate boundary conditions and initial conditions. As is customary, q, u, p and E describe the density, velocity,
pressure and total energy, respectively. The equation of state has the form
E ¼ p
c� 1

þ 1
2
qu2;
where c = 1.4 for air at ordinary temperatures. We consider the right boundary x = 1. The left boundary can be treated in a
similar fashion.

To decide the inflow and outflow boundary conditions at time t, we need a local characteristic decomposition of the PDEs.
At the boundary, we denote the Jacobian matrix of the flux by
A?ðUbÞ ¼
@FðUÞ
@U

����
U¼Ub

;

where Ub = U(1,t). A\(Ub) has three eigenvalues k1(Ub) = ub � cb, k2(Ub) = ub, k3(Ub) = ub + cb and a complete set of left eigen-
vectors l1(Ub), l2(Ub), l3 (Ub) which forms a matrix
LðUbÞ ¼
l1ðUbÞ
l2ðUbÞ
l3ðUbÞ

0B@
1CA ¼ l1;1ðUbÞ l1;2ðUbÞ l1;3ðUbÞ

l2;1ðUbÞ l2;2ðUbÞ l2;3ðUbÞ
l3;1ðUbÞ l3;2ðUbÞ l3;3ðUbÞ

0B@
1CA:
As in the scalar case, we assume at present that all the eigenvalues are bounded away from zero. The number of boundary
conditions depends on the number of nonpositive eigenvalues. For simplicity, we assume that Um(1,t) = gm(t), 1 6m 6 q is
prescribed at the boundary if km(Ub) < 0, 1 6m 6 q. Indeed, this is equivalent to prescribing the ingoing characteristic vari-
able VI as a function of the outgoing characteristic variable V I, where VI is the first q components of V = L(Ub)U and V I is the
last 3 � q components of V.

With the local characteristic decomposition, our problem reduces to three scalar conservation laws in terms of the char-
acteristic variable V. In our numerical scheme, we use the inverse Lax-Wendroff procedure for inflow boundary conditions of
VI and extrapolation for outflow boundary conditions of V I. To illustrate how this works, we assume k1(Ub) 6 k2(Ub) < 0 and
k3(Ub) > 0 at the boundary. Thus an appropriate set of boundary conditions is
U1ð1; tÞ ¼ g1ðtÞ;
U2ð1; tÞ ¼ g2ðtÞ;
for t > 0.
We still use the uniform mesh described in (2.6). At time level tn, we assume Uj, j = 0, . . .,N, have been updated by the

interior scheme. The values of ghost points are approximated by a (s � 1)th order Taylor expansion
ðUmÞj ¼
Xs�1

k¼0

ðxj � 1Þk

k!
U�ðkÞm ; m ¼ 1;2;3; j ¼ N þ 1;N þ 2;N þ 3; ð2:26Þ
where U�ðkÞm is a (s � k)th order approximation of the spatial derivatives @kUm
@xk ð1; tnÞ. In the local characteristic decomposition,

we replace Ub by UN since U(1,tn) is not always prescribed. We define the outgoing local characteristic variable V3 at grid
points near the boundary by
ðV3Þj ¼ l3ðUNÞUj; j ¼ N � 4; . . . ;N: ð2:27Þ
We extrapolate (V3)j to the boundary either with (2.12) if the solution is smooth near the boundary or with the WENO type
extrapolation (2.13) if a shock is close to the boundary. We denote the extrapolated kth order derivatives of V3 at the bound-
ary by V�ðkÞ3 ; k ¼ 0; . . . ; s� 1. Obviously, we impose U�ð0Þ1 ¼ g1ðtnÞ and U�ð0Þ2 ¼ g2ðtnÞ. U�ð0Þ3 is obtained by
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U�ð0Þ3 ¼ 1
l3;3ðUNÞ

V�ð0Þ3 � l3;1ðUNÞU�ð0Þ1 � l3;2ðUNÞU�ð0Þ2

h i
:

Next we try to find the spatial derivatives U�ð1Þm with the inverse Lax-Wendroff procedure for U1 and U2, together with the
extrapolation of V3. The first two equations of the Euler system and the extrapolated value V�ð1Þ3 give us
U�ð1Þ2 ¼ �g01ðtnÞ;

ðc� 1ÞU�ð1Þ3 þ 3� c
2

2U�ð0Þ2

U�ð0Þ1

U�ð1Þ2 � U�ð0Þ2

U�ð0Þ1

 !2

U�ð1Þ1

24 35 ¼ �g02ðtnÞ;

l3;1ðUNÞU�ð1Þ1 þ l3;2ðUNÞU�ð1Þ2 þ l3;3ðUNÞU�ð1Þ3 ¼ V�ð1Þ3 :

ð2:28Þ
Solving this linear system, we obtain first order derivatives U�ð1Þm . We remark that the condition number of the coefficient
matrix in (2.28) is small with the assumption that all the eigenvalues are bounded away from zero. Repeatedly using the
Euler equations, we are able to form a linear system with the spatial derivatives U�ðkÞm as the unknowns and the right-hand
side depending on derivatives of g1, g2, extrapolated derivatives of V3 and lower order spatial derivatives
U�ðlÞm ; l ¼ 0; . . . ; k� 1. The coefficient matrix always depends only on U�ð0Þm . To save space, we only provide the linear system
in the case of k = 2 as follows:
c� 3
2

U�ð0Þ2

U�ð0Þ1

 !2

U�ð2Þ1 � U�ð0Þ2

U�ð0Þ1

ðc� 3ÞU�ð2Þ2 þ ðc� 1ÞU�ð2Þ3

¼ g001ðtnÞ þ
ðc� 3Þ U�ð0Þ1 U�ð1Þ2 � U�ð0Þ2 U�ð1Þ1

� �2

U�ð0Þ1

� �3 ;

ð�7þ 2cþ c2Þ
2

U�ð0Þ2

U�ð0Þ1

 !3

� cðc� 1ÞU
�ð0Þ
2 U�ð0Þ3

U�ð0Þ1

� �2

264
375U�ð2Þ1

þ �ð�12þ 5cþ c2Þ
2

U�ð0Þ2

U�ð0Þ1

 !2

þ cðc� 1ÞU
�ð0Þ
3

U�ð0Þ1

24 35U�ð2Þ2 þ 3ðc� 1ÞU
�ð0Þ
2

U�ð0Þ1

U�ð2Þ3

¼ g002ðtnÞ þ I1; l3;1ðUNÞU�ð2Þ1 þ l3;2ðUNÞU�ð2Þ2 þ l3;3ðUNÞU�ð2Þ3 ¼ V�ð2Þ3 ;
where
I1 ¼
1

2 U�ð0Þ1

� �4 3ð�7þ 2cþ c2Þ U�ð0Þ2

� �3
U�ð1Þ1

� �2
� U�ð0Þ1 U�ð0Þ2

� �2
ð�45þ 16cþ 5c2ÞU�ð1Þ1 U�ð1Þ2 þ 2ðc� 1Þ U�ð0Þ1

� �2
�

� �ð3þ cÞU�ð0Þ1 U�ð1Þ2 U�ð1Þ3 þ 2cU�ð0Þ3 U�ð1Þ1 U�ð1Þ2

h i
þ 2U�ð0Þ1 U�ð0Þ2 �2ðc� 1ÞcU�ð0Þ3 U�ð1Þ1

� �2
þ U�ð0Þ1 I2


 ��
;

I2 ¼ ð�12þ 5cþ c2Þ U�ð1Þ2

� �2
þ ðc� 1Þð3þ cÞU�ð1Þ1 U�ð1Þ3 :
Before we summarize our algorithm, we turn to the issue of zero eigenvalues. For simplicity, we assume k2(UN) is close to
zero, or the Mach number satisfies�b 6MN = uN/cN 6 b, where b is a small positive number, say b = 0.01. In this situation, the
local characteristic variable V2 can either go into the boundary or go out of the boundary. On the one hand, if we assume an
ingoing V2, we still have the linear system (2.28), which is however ill-conditioned. The condition number will be larger and
larger as MN gets close to zero. To make the system well-conditioned, we add to (2.28) the equation of extrapolation of V2
l2;1ðUNÞU�ð1Þ1 þ l2;2ðUNÞU�ð1Þ2 þ l2;3ðUNÞU�ð1Þ3 ¼ V�ð1Þ2 : ð2:29Þ
(2.28) and (2.29) form a system of four equations with three unknowns. We consider it as a linear least squares problem. The
condition number of the 4 � 3 matrix is small. On the other hand, if only one boundary condition is prescribed, such as the
case of solid wall boundary condition u = 0, we have to assume an outgoing V2. Now the second equation of (2.28) is replaced
by (2.29) and the resulting system is well-conditioned as well.

We summarize our algorithm for imposing the values of Uj at ghost points near the right boundary x = 1 as follows,
assuming that Uj, j = 0, . . .,N, have been updated at time level tn.
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1. Compute the eigenvalues km(UN) and left eigenvectors lm(UN) of the Jacobian matrix A\(UN) for m = 1, 2, 3. Decide the pre-
scribed inflow boundary conditions gm(t) according to the signs of km(UN).

2. Form the outgoing characteristic variables (Vm)j, j = N � 4, . . .,N, as in (2.27). Extrapolate (Vm)j to the boundary to obtain
V�ðkÞm ; k ¼ 0; . . . ; s� 1, with Lagrange extrapolation (2.12) or the WENO type extrapolation (2.13).

3. Solve for U�ð0Þm ; m ¼ 1;2;3, with the prescribed boundary conditions and extrapolated values V�ð0Þm .
4. For k = 1, . . .,s � 1, use the inverse Lax-Wendroff type procedure to write the kth order derivatives of gm(t) as a linear com-

bination of kth order spatial derivatives and other terms. Together with the extrapolation equations, form a linear system
(such as (2.28)) or a linear least squares problem (such as (2.28) and (2.29)) for U�ðkÞm ; m ¼ 1;2;3. Solve for
U�ðkÞm ; m ¼ 1;2;3.

5. Impose the values of the ghost points by the Taylor expansion (2.26).

2.5. Two-dimensional case

The approach can be easily generalized to two-dimensional problems (2.1). We consider 2D compressible Euler equations
Ut þ FðUÞx þ GðUÞy ¼ 0; ðx; yÞ 2 X; t > 0; ð2:30Þ
where
U ¼

U1

U2

U3

U4

0BBBB@
1CCCCA ¼

q

qu

qv

E

0BBBB@
1CCCCA;

FðUÞ ¼

qu

qu2 þ p

quv

uðEþ pÞ

0BBBB@
1CCCCA;

GðUÞ ¼

qv

quv

qv2 þ p

vðEþ pÞ

0BBBB@
1CCCCA;
with appropriate boundary conditions and initial conditions. q, u, v, p and E describe the density, x-velocity, y-velocity, pres-
sure and total energy, respectively. The equation of state has the form
E ¼ p
c� 1

þ 1
2
qðu2 þ v2Þ;
where c = 1.4 for air at ordinary temperatures.
We assume the values of the grid points inside domain X have been updated by the interior scheme. To define the value

of Ui,j at a ghost point P = (xi, yj), we find a point P0 = (x0, y0) on the boundary oX so that the outward normal n = (n1, n2) to oX
at P0 goes through P. We set up a local coordinate system at P0 by
x̂

ŷ

� �
¼

cos h sin h

� sin h cos h

� �
x
y

� �
¼ T

x
y

� �
; ð2:31Þ
where h is the angle between the normal n and the x-axis and T is a rotation matrix. Notice that the x̂-axis points in the nor-
mal direction to oX at P0 and the ŷ-axis points in the tangential direction to oX at P0. In this local coordinate system, the
Euler system (2.30) is
bU t þ FðbU Þx þ GðbUÞy ¼ 0; ð2:32Þ
where
bU ¼
bU1bU2bU3bU4

0BBBB@
1CCCCA ¼

q
qû

qv̂
E

0BBB@
1CCCA;

û

v̂

� �
¼ T

u

v

� �
:
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At the boundary, we have the Jacobian matrix of the normal flux
A?ðbU bÞ ¼
@FðbU Þ
@ bU

�����bU¼bU b

;

where bU b ¼ bUðx0; y0; tÞ. A?ðbU bÞ has four eigenvalues k1ðbU bÞ ¼ ûb � cb; k2ðbU bÞ ¼ k3ðbU bÞ ¼ ûb; k4ðbU bÞ ¼ ûb þ cb and a com-
plete set of left eigenvectors l1ðbU bÞ; l2ðbU bÞ, l3ðbU bÞ; l4ðbU bÞ which forms a matrix
LðbU bÞ ¼

l1ðbU bÞ
l2ðbU bÞ
l3ðbU bÞ
l4ðbU bÞ

0BBBBB@

1CCCCCA ¼
l1;1ðbU bÞ l1;2ðbU bÞ l1;3ðbU bÞ l1;4ðbU bÞ
l2;1ðbU bÞ l2;2ðbU bÞ l2;3ðbU bÞ l2;4ðbU bÞ
l3;1ðbU bÞ l3;2ðbU bÞ l3;3ðbU bÞ l3;4ðbU bÞ
l4;1ðbU bÞ l4;2ðbU bÞ l4;3ðbU bÞ l4;4ðbU bÞ

0BBBBB@

1CCCCCA:
Now the number of prescribed boundary conditions depends on the signs of kmðbU bÞ; m ¼ 1; . . . ;4. For simplicity, we assume
that kmðbU bÞ 6 �a < 0; m ¼ 1;2;3 and k4ðbU bÞP a > 0. The boundary conditions are
bU1ðx0; y0; tÞ ¼ g1ðtÞ;bU2ðx0; y0; tÞ ¼ g2ðtÞ;bU3ðx0; y0; tÞ ¼ g3ðtÞ;
for t > 0.
The value of bU i;j at ghost point P is approximated by a (s � 1)th order Taylor expansion
ðbUmÞi;j ¼
Xs�1

k¼0

dk

k!
bU�ðkÞm ; m ¼ 1; . . . ;4; ð2:33Þ
where d is the x̂-coordinate of P and bU�ðkÞm is a (s � k)th order approximation of the normal derivatives @kbU m
@x̂k ðx0; y0; tnÞ. In the

local characteristic decomposition, we replace bU b by bU 0 which is the value of a grid point nearest to P0 among all the grid
points inside X. We define the outgoing local characteristic variable V4 at grid points near P0 by
ðV4Þl;m ¼ l4ðbU 0ÞbUl;m; ðxl; ymÞ 2 Ei;j; ð2:34Þ
where E i;j is a set of grid points inside X which are used to construct an extrapolating polynomial. The construction of E i;j will
be discussed in Section 2.6. We extrapolate (V4)l,m to the boundary and denote the extrapolated x̂-derivatives of V4 at the
boundary by V�ðkÞ4 ; k ¼ 0; . . . ; s� 1. Obviously, we impose bU�ð0Þ1 ¼ g1ðtnÞ; bU�ð0Þ2 ¼ g2ðtnÞ and bU�ð0Þ3 ¼ g3ðtnÞ. bU�ð0Þ4 is obtained by
bU�ð0Þ4 ¼ 1

l4;4ðbU 0Þ
V�ð0Þ4 � l4;1ðbU 0ÞbU�ð0Þ1 � l4;2ðbU 0ÞbU�ð0Þ2 � l4;3ðbU 0ÞbU�ð0Þ3

h i
:

Next we try to find the x̂-derivatives bU�ð1Þm with the inverse Lax-Wendroff procedure for bU1; bU2; bU3, together with the
extrapolation of V4. The first three equations of (2.32) and the extrapolated value V�ð1Þ4 give us
AbU �ð1Þ ¼ b; ð2:35Þ
where
A ¼

0 1 0 0

c�3
2

U�ð0Þ2

U�ð0Þ1

� �2

þ c�1
2

U�ð0Þ3

U�ð0Þ1

� �2

ð3� cÞ U�ð0Þ2

U�ð0Þ1

ð1� cÞ U�ð0Þ3

U�ð0Þ1

ðc� 1Þ

� U�ð0Þ2

U�ð0Þ
1

U�ð0Þ3

U�ð0Þ
1

U�ð0Þ3

U�ð0Þ
1

U�ð0Þ2

U�ð0Þ
1

0

l4;1ðbU 0Þ l4;2ðbU 0Þ l4;3ðbU 0Þ l4;4ðbU 0Þ

0BBBBBBBBB@

1CCCCCCCCCA
;

bU �ð1Þ ¼
bU�ð1Þ1bU�ð1Þ2bU�ð1Þ3bU�ð1Þ4

0BBBBBB@

1CCCCCCA
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and
b ¼

�g01ðtnÞ � @
@ŷ

bU�ð0Þ3

� �
�g02ðtnÞ � @

@ŷ

bU �ð0Þ2
bU �ð0Þ3bU �ð0Þ1

 !

�g03ðtnÞ � @
@ŷ ðc� 1ÞbU�ð0Þ4 � c�1

2

bU �ð0Þ2

� 	2

bU �ð0Þ1

þ 3�c
2

bU �ð0Þ3

� 	2

bU �ð0Þ1

" #
V�ð1Þ4

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

Solving this 4 � 4 linear system, we obtain first order normal derivatives bU�ð1Þm . Again, the condition number of A in (2.35) is
small with the assumption that all the eigenvalues are bounded away from zero. Repeatedly using the Euler equations, we
are able to form a linear system with the normal derivatives bU�ðkÞm as the unknowns and the right-hand side depending on
derivatives of g1, g2, g3, tangential derivatives, extrapolated normal derivatives of V4 and lower order normal derivativesbU�ðlÞm ; l ¼ 0; . . . ; k� 1. The coefficient matrix depends only on bU�ð0Þm .

To compute the tangential derivatives in b, we use either analytical expressions if available or numerical differentiation. The
latter is always possible since we have obtained the values of bU �ð0Þm along the boundary. For robustness, a least squares poly-
nomial of suitable degree is used if the solution is smooth near the boundary, or WENO type differentiation is used otherwise.

We now summarize our algorithm for imposing the values of Ui, j at ghost points as follows, assuming the values of the
grid points inside X have been updated at time level tn.

1. For each ghost point (xi, yj), we do the following three steps:
� Decide the local coordinate system (2.31). Compute the eigenvalues kmðbU 0Þ and left eigenvectors lmðbU 0Þ of the Jaco-

bian matrix A?ðbU 0Þ for m = 1, . . .,4. Decide the prescribed inflow boundary conditions gm(t) according to the signs of
kmðbU 0Þ.

� Form the outgoing characteristic variables ðVmÞl;m; ðxl; ymÞ 2 Ei;j as in (2.34). Extrapolate (Vm)l,m to the boundary to
obtain V�ðkÞm ; k ¼ 0; . . . ; s� 1, with a Lagrange polynomial or a least squares polynomial if the solution is smooth near
the boundary, or with the WENO type extrapolation otherwise. Details of the two-dimensional extrapolation will be
discussed in Section 2.6.

� Solve for bU�ð0Þm ; m ¼ 1; . . . ;4, with the prescribed boundary conditions and extrapolated values V�ð0Þm .
2. For k = 1, . . .,s � 1, we do the following calculations. For each ghost point (xi,yj), use the inverse Lax-Wendroff type pro-

cedure to write the kth order derivatives of gm(t) as a linear combination of kth order normal derivatives plus tangential
derivatives and other terms. Together with the extrapolation equations, form a linear system (such as (2.35)) or a linear
least squares problem for bU�ðkÞm ; m ¼ 1; . . . ;4. Solve for bU�ðkÞm ; m ¼ 1; . . . ;4.

3. Impose the value of bU i;j by the Taylor expansion (2.33) and transform bU i;j to Ui,j.

We remark that the change of coordinate system is used only for determining inflow boundary conditions and for apply-
ing the inverse Lax-Wendroff procedure. Our uniform Cartesian mesh remains unchanged.

2.6. Two-dimensional extrapolation

We return to the issue of two-dimensional extrapolation, which is needed in the second bullet of step 1 in our algorithm
flowchart for two-dimensional problems. We assume ui, j, (xi,yj) 2X, are given. We aim to first construct a stencil E 	 X for
extrapolation and then obtain a (s � k)th order approximation of @ku

@x̂k jðx;yÞ¼ðx0 ;y0Þ, which is denoted by u*(k), k = 0, . . .,s � 1. We
assume s = 3, since we use this order of extrapolation in most of the numerical examples.

The choice of stencil E is sketched in Fig. 2.1. E contains three one-dimensional substencils Sl; l ¼ 0;1;2. Suppose the nor-
mal n (or x̂-axis) intersects the grid line y = yn+l, l = 0, 1, 2, at a point P�l . We identify the grid point on y = yn+l which is nearest
to P�l by ðxl

m; ynþlÞ. Then we set Sl ¼ fðxl
m�1; ynþlÞ; ðxl

m; ynþlÞ; ðxl
mþ1; ynþlÞg; l ¼ 0;1;2 and E ¼

S2
l¼0Sl. Notice that we might need

to shift Sl to the left or to the right so that Sl lies in X.
Once the stencil E is chosen, we can easily construct a Lagrange polynomial in Q2
p2ðx; yÞ ¼
X2

m¼0

X2

l¼0

almxlym
satisfying
p2ðxi; yjÞ ¼ ui;j; ðxi; yjÞ 2 E: ð2:36Þ
u*(k) is then obtained by
u�ðkÞ ¼ @k

@x̂k
p2ðx; yÞ

�����
ðx;yÞ¼ðx0 ;y0Þ

: ð2:37Þ



Fig. 2.1. The choice of stencil E (square points) for two-dimensional extrapolation.
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We can also develop WENO type extrapolation, which is useful if a shock is close to the boundary. Suppose
prðx; yÞ ¼
Xr

m¼0

Xr

l¼0

almxlym; r ¼ 0;1;2;
is constructed on S2
r , where S2

0 	 S2
1 	 S2

2 ¼ E are two-dimensional substencils containing (r + 1)2 points. We seek WENO type
extrapolation of the form
u�ðkÞ ¼
X2

r¼0

xr
@kprðx; yÞ

@x̂k

�����
ðx;yÞ¼ðx0 ;y0Þ

; ð2:38Þ
where xr are nonlinear weights. The nonlinear weights xr are chosen to be
xr ¼
arP2
s¼0as

;

with
ar ¼
dr

ð�þ brÞ
2 ;
where � ¼ 10�6; d0 ¼ Dx2 þ Dy2; d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
; d2 ¼ 1� d0 � d1. br are determined by
b0 ¼ Dx2 þ Dy2;

br ¼
X

16jaj6r

Z
K
jKjjaj�1 Daprðx; yÞ

� 	2 dxdy; r ¼ 1;2;
where a is a multi-index and K = [x0 � Dx/2, x0 + Dx/2] � [y0 � Dy/2, y0 + Dy/2]. We can show that br, r = 1 or 2, is small if a
discontinuity appears in S2

r and
x0 ¼ OðDx2 þ Dy2Þ;
x1 ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
Þ;

x2 ¼ 1�x0 �x1;

ð2:39Þ
if the values of ui,j are smooth. We omit the proof here since the arguments are very similar to those in Section 2.2.
In the case of subsonic outflow boundary conditions, the high order Lagrange extrapolation (2.37) seems to make the

whole scheme mildly unstable. A remedy is to include more points in E so that (2.36) is satisfied in the sense of least squares.
We use this least squares extrapolation in the vortex evolution problem in Section 3.2, where E is taken as
E ¼ ðxl; ymÞ 2 X :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl � x0Þ2 þ ðym � y0Þ

2
q

< 5Dx
� �

:

It seems that the WENO type extrapolation (2.38) does not have this issue when used in the presence of shocks near the
boundary. This might be due to the fact that the WENO type extrapolation reduces to a low order method if the solution
becomes unstable, which helps stabilizing the scheme.
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3. Numerical examples

3.1. One-dimensional examples

Example 1. We start with the wave equation
Table 3
Errors o

N

40
80
160
320
640
ut þ ux ¼ 0 x 2 ð�1;1Þ; t > 0;
uðx;0Þ ¼ 0:25þ 0:5 sinðpxÞ x 2 ½�1;1�;
uð�1; tÞ ¼ gðtÞ t > 0:

8><>: ð3:1Þ
The left boundary x = �1 is an inflow boundary, where a boundary condition is prescribed. The right boundary x = 1 is an
outflow boundary, where no boundary condition is needed.

We first take
gðtÞ ¼ 0:25� 0:5 sin½pð1þ tÞ� ð3:2Þ
so that the initial boundary value problem has a smooth exact solution
uðx; tÞ ¼ 0:25þ 0:5 sin½pðx� tÞ�:
We use a fourth order Taylor expansion. The errors at t = 1 are listed in Table 3.1. We can clearly see the desired fifth order
convergence.

Next, we take g(t) as
gðtÞ ¼
0:25 t 6 1;
�1 t > 1:

�
ð3:3Þ
The exact solution is then
uðx; tÞ ¼
�1 x < t � 2;
0:25 t � 2 6 x < t � 1;
0:25þ 0:5 sin½pðx� tÞ� x P t � 1:

8><>:

For t 6 1, the exact solution has a discontinuity in its first derivative, due to the definition of g(t). For t > 1, a discontinuity
enters the computational domain from the inflow boundary. We can observe from Fig. 3.1 that both types of discontinuities
are well captured by our method.
.1
f the wave equation (3.1) with boundary condition (3.2). Dx = 2/N and t = 1.

L1 error Order L1 error Order

1.74E�05 2.31E�05
5.31E�07 5.03 7.42E�07 4.96
1.65E�08 5.01 2.21E�08 5.07
5.16E�10 5.00 6.66E�10 5.05
1.61E�11 5.00 1.88E�11 5.15
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Fig. 3.1. Wave equation (3.1) with boundary condition (3.3). Dx = 1/40, t = 1.5. Solid line: exact solution; symbols: numerical solution.
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Example 2. We next test the Burgers equation
Table 3
Errors o

N

40
80
160
320
640
1280
ut þ 1
2 u2
� 	

x ¼ 0 x 2 ð�1;1Þ; t > 0;
uðx;0Þ ¼ 0:25þ 0:5 sinðpxÞ x 2 ½�1;1�;
uð�1; tÞ ¼ gðtÞ t > 0:

8><>: ð3:4Þ
Here g(t) = w(�1, t), where w(x, t) is the exact solution of the initial value problem on (�1,1) with periodic boundary condi-
tions. For all t, the left boundary x = �1 is an inflow boundary and the right boundary x = 1 is an outflow boundary. We use a
fourth order Taylor expansion. At t = 0.3, we have a smooth solution. The errors are listed in Table 3.2. We achieve the de-
signed fifth order accuracy. At t = 1.1, a shock is fully developed in the interior of the computational domain. A shock enters
the inflow boundary at t = 8 and moves to x = 0 at t = 12. We can see from Fig. 3.2 that the shock is well captured in both
scenarios by our method.
Example 3. For one-dimensional systems, we first test the Euler equations with smooth solutions.
(a) The domain is (�p,p). The initial condition is
qðx;0Þ ¼ 1þ 0:2 sin x;

uðx;0Þ ¼ 1;
pðx;0Þ ¼ 2:

ð3:5Þ
We want to impose the boundary conditions in such a way that the exact solution is simply a translation of the initial
condition
qðx; tÞ ¼ 1þ 0:2 sinðx� tÞ;
uðx; tÞ ¼ 1;
pðx; tÞ ¼ 2:
At both boundaries, we have k1 < 0, k2 > 0 and k3 > 0. Hence two boundary conditions are needed at x = �p, which are taken as
qð�p; tÞ ¼ 1þ 0:2 sin t; ð3:6Þ
uð�p; tÞ ¼ 1: ð3:7Þ
.2
f the Burgers equation (3.4). Dx = 2/N and t = 0.3.

L1 error Order L1 error Order

9.11E�05 3.56E�04
3.10E�06 4.88 1.35E�05 4.72
1.31E�07 4.57 6.51E�07 4.38
3.97E�09 5.05 2.68E�08 4.60
1.02E�10 5.29 8.34E�10 5.00
2.86E�12 5.15 2.62E�11 5.00
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Fig. 3.2. Burgers equation (3.4), Dx = 1/40. Solid line: exact solution; symbols: numerical solution.
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One boundary condition is needed at x = p, which is taken as
Table 3
Density

N

40
80
160
320
640

Table 3
Density

N

80
160
320
640
1280
qðp; tÞ ¼ 1þ 0:2 sin t: ð3:8Þ
We use a fourth order Taylor expansion. We can observe from Table 3.3 that the designed fifth order accuracy is achieved.
(b) The domain is (0,1). The initial condition is
qðx;0Þ ¼ aþ sinð2pxÞ;
uðx;0Þ ¼ 1þ 0:1 sinð2pxÞ;
pðx;0Þ ¼ b;

ð3:9Þ
where a and b are real numbers. A reference solution W(x,t) can be obtained by the fifth order WENO scheme with periodic
boundary conditions on (0,1) using an extremely refined mesh. To test our method, we assume Dirichlet boundary condi-
tions in such a way that the exact solution of the initial boundary value problem is W(x,t).

If we take a = 1.5, b = 3 in (3.9), we have k1 < 0, k2 > 0 and k3 > 0 at both boundaries. At the left boundary x = 0, we
prescribe two boundary conditions
u1ð0; tÞ ¼W1ð0; tÞ; ð3:10Þ
u2ð0; tÞ ¼W2ð0; tÞ: ð3:11Þ
At the right boundary, we prescribe one boundary condition
u1ð1; tÞ ¼W1ð1; tÞ: ð3:12Þ
We use a second order Taylor expansion so that a third order method is expected. For this truly nonlinear problem, we can
see third order convergence in the left part of Table 3.4.

If we take a = 2, b = 1.6 in (3.9), the eigenvalues km change signs at both boundaries. As a result, the number of boundary
conditions varies with time. A least squares problem is solved if km is close to zero. We can observe from the right part of
Table 3.4 that the designed third order accuracy is again achieved.
Example 4. We then test our method for the Euler equations with shocks. We consider the interaction of two blast waves
[19]. The initial data are
Uðx;0Þ ¼
UL 0 < x < 0:1;
UM 0:1 < x < 0:9;
UR 0:9 < x < 1;

8><>:

where qL = qM = qR = 1, uL = uM = uR = 0, pL = 103, pM = 10�2, pR = 102. There are solid wall boundary conditions at both x = 0
and x = 1. This problem involves multiple reflections of shocks and rarefactions off the walls. There are also multiple inter-
actions of shocks and rarefactions with each other and with contact discontinuities. At both boundaries, we use a second
order Taylor expansion with the inverse Lax-Wendroff procedure for the inflow condition u = 0 and the WENO type extrap-
olation for the outflow conditions. The density profile at t = 0.038 is shown in Fig. 3.3(a) with Dx = 1/800 and in Fig. 3.3(b)
.3
errors of the Euler equations with initial condition (3.5) and boundary conditions (3.6)–(3.8). Dx = 2p/N and t = 2.

L1 error Order L1 error Order

3.23E�06 8.96E�06
7.39E�08 5.45 2.00E�07 5.48
2.12E�09 5.12 5.91E�09 5.08
6.49E�11 5.03 1.66E�10 5.16
2.00E�12 5.02 4.91E�12 5.08

.4
errors of the Euler equations with initial condition (3.9). Dx = 1/N.

a = 1.5, b = 3, t = 1.5 a = 2, b = 1.6, t = 1

L1 error Order L1 error Order L1 error Order L1 error Order

3.35E�05 1.73E�04 3.41E�06 1.29E�05
3.49E�06 3.26 2.06E�05 3.07 4.72E�07 2.85 2.39E�06 2.43
5.36E�07 2.70 3.10E�06 2.74 6.10E�08 2.95 3.31E�07 2.85
7.13E�08 2.91 4.10E�07 2.92 7.69E�09 2.99 4.65E�08 2.83
9.12E�09 2.97 5.24E�08 2.97 9.87E�10 2.96 6.36E�09 2.87
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Fig. 3.3. The density profiles of the blast wave problem. Solid lines: reference solution computed by the fifth order WENO scheme with Dx = 1/16,000,
together with the reflection technique at boundaries; symbols: numerical solutions by our boundary treatment.
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with Dx = 1/1600. The reference solution is computed by the fifth order WENO scheme with Dx = 1/16,000, together with the
reflection technique at both boundaries. We can clearly see that our boundary treatment gives a satisfactory resolution.

Before we finish this section, there are some comments on the additional computational cost of the proposed high order
boundary treatment. In all our one-dimensional examples, the CPU time of the boundary treatment takes up at most five
percent of the entire CUP time of computation. We do not list the exact ratios since the CPU time of the boundary treatment
is so small that it varies significantly for repeated runs. In other words, the additional cost of our boundary treatment is neg-
ligible compared to the cost of the entire computation for one-dimensional problems.

3.2. Two-dimensional examples

Example 5. We start our two-dimensional examples with the wave equation on a square or on a disk
Fig. 3.4
bounda
ut þ ux þ uy ¼ 0 ðx; yÞ 2 X; t > 0;
uðx; y;0Þ ¼ 0:25þ 0:5 sin½pðxþ yÞ� ðx; yÞ 2 �X;

uðx; y; tÞ ¼ gðx; y; tÞ ðx; yÞ 2 C; t > 0;

8><>: ð3:13Þ
where
X ¼ ð�1;1Þ � ð�1;1Þ;
C ¼ fðx; yÞ : x ¼ �1 or y ¼ �1g;
or
X ¼ fðx; yÞ : x2 þ y2 < 0:5g;
C ¼ fðx; yÞ : x2 þ y2 ¼ 0:5 and xþ y 6 0g:
. Domain X of the 2D wave equation (3.13). Square points indicate some of the grid points. Solid lines: inflow boundary; dashed lines: outflow
ry.
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Both domains are illustrated in Fig. 3.4 with a coarse mesh. Notice that the grid points are not located on the boundary in
either case.

On the disk, special care must be taken when we impose the inflow boundary condition on a ghost point near the
intersection of the inflow boundary and the outflow boundary, which is (�0.5,0.5) or (0.5,�0.5) in our example. In this
situation, the inverse Lax-Wendroff procedure involves a small number divided by a small number, which ruins the accuracy
or makes the scheme blow up. There are two ways to deal with this ill-conditioned problem. The first one is using the
analytical expressions of time derivatives and tangential derivatives. The other one is adding an extrapolation equation and
solving a least squares problem. We use the former here because the analytical expressions are available. We will use the
latter in the next example.

We take
Table 3
Errors o

Nx =

40
80
160
320
gðx; y; tÞ ¼ 0:25þ 0:5 sin½pðxþ y� 2tÞ� ð3:14Þ
so that we have a smooth exact solution
uðx; y; tÞ ¼ 0:25þ 0:5 sin½pðxþ y� 2tÞ�:
We use a fourth order Taylor expansion. The errors are listed in Table 3.5. We can clearly see fifth order convergence.
To study the additional computational cost, we list the ratios between the CPU time of boundary treatment and the total

CPU time of computation in Table 3.6. For each problem, the finer the mesh, the lower the ratio, which results simply from
the fact that the boundary is one-dimensional while the computational domain is two-dimensional. Comparing the two
problems, we can see that the cost due to boundary treatment of wave equation on a square is about twice as large as that of
the same equation on a disk. In fact, this is mainly due to the different ways of computing the time derivatives and tangential
derivatives involved in the inverse Lax-Wendroff procedure. We use ENO type differentiation in the former problem while
analytical expressions are used in the latter problem. Further numerical experiments show that the cost due to boundary
treatment is negligible (under two percent) if analytical expressions are used in the former problem. We conclude here that
although the inverse Lax-Wendroff procedure itself is straightforward if we have a simple PDE on a simple domain,
computing the time derivatives and tangential derivatives using numerical differentiation could be rather expensive.

We next take a discontinuous boundary condition
gðx; y; tÞ ¼
0:25þ 0:5 sinpðxþ y� 2tÞ xþ y� 2t > �1:23;
1:25þ 0:5 sin pðxþ y� 2tÞ xþ y� 2t 6 �1:23:

�
ð3:15Þ
Now we have a discontinuous exact solution. The numerical solution and exact solution along the diagonal are shown in
Fig. 3.5. We can see an excellent non-oscillatory resolution.
Example 6. We next test the 2D Burgers equation
ut þ 1
2 ðu2Þx þ 1

2 ðu2Þy ¼ 0 ðx; yÞ 2 X; t > 0;

uðx; y;0Þ ¼ 0:75þ 0:5 sin½pðxþ yÞ� ðx; yÞ 2 �X;

uðx; y; tÞ ¼ gðx; y; tÞ ðx; yÞ 2 C; t > 0;

8><>: ð3:16Þ
where
X ¼ ð�1;1Þ � ð�1;1Þ;
C ¼ fðx; yÞ : x ¼ �1 or y ¼ �1g;
.5
f the 2D wave equation (3.13) with boundary condition (3.14). Dx = 2/Nx, Dy = 2/Ny.

Ny On a square, t = 0.5 On a disk, t = 0.8

L1 error Order L1 error Order L1 error Order L1 error Order

8.19E�06 2.17E�05 9.64E�06 3.61E�05
2.68E�07 4.93 7.11E�07 4.93 2.88E�07 5.06 9.45E�07 5.26
8.59E�09 4.96 2.24E�08 4.99 8.89E�09 5.02 3.01E�08 4.97
2.72E�10 4.98 6.77E�10 5.05 2.76E�10 5.01 9.58E�10 4.97

Table 3.6
Ratio between the CPU time of boundary treatment and the total CPU time of computation, the 2D wave equation (3.13)
with boundary condition (3.14).

Nx = Ny 40 80 160 320

On a square 0.73 0.64 0.46 0.30
On a disk 0.42 0.33 0.20 0.12
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Fig. 3.5. 2D wave equation (3.13) with boundary condition (3.15). Dx = Dy = 1/40. Cut along the diagonal. Solid line: exact solution; symbols: numerical
solution.
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or
Table 3
Errors o

Nx =

40
80
160
320
640
X ¼ fðx; yÞ : x2 þ y2 < 0:5g;
C ¼ fðx; yÞ : x2 þ y2 ¼ 0:5 and xþ y 6 0g:
Here g(x,y,t) = w(x,y,t), where w(x,y,t) is the exact solution of the initial value problem on (�1,1) � (�1,1) with periodic
boundary conditions. We use a second order Taylor expansion at the inflow boundary. At the outflow boundary, we use
the WENO type extrapolation, which is third order accurate if the solution is smooth. At t = 0.15, we have a smooth solution.
The errors are listed in Table 3.7. We achieve the designed third order accuracy. At t = 0.55, a shock is fully developed in the
interior of X. A shock begins entering X from the inflow boundary at t = 4 and moves to x = 0 at t = 6. We can see from Fig. 3.6
that the shock is well captured on both domains. Notice that there is a shock very close to the outflow boundary in Fig. 3.6(a).
The robust WENO type extrapolation gives us a non-oscillatory numerical solution with little overshoot.
Example 7. For two-dimensional systems, we test the vortex evolution problem for the Euler equation (2.30). The mean flow
is q = p = u = v = 1. We add to this mean flow an isentropic vortex perturbation centered at (x0, y0) in (u, v) and in the tem-
perature T = p/q, no perturbation in the entropy S = p/qc
ðdu; dvÞ ¼ �
2p

e0:5ð1�r2Þð��y; �xÞ;

dT ¼ �ðc� 1Þ�2

8cp2 eð1�r2Þ;

dS ¼ 0;
where ð�x; �yÞ ¼ ðx� x0; y� y0Þ; r2 ¼ �x2 þ �y2 and the vortex strength is � = 5. We regard the exact solution of this problem
W(x,y, t) as the passive convection of the vortex with the mean velocity and take the boundary conditions from W(x,y, t)
whenever needed. The number of boundary conditions is determined by the signs of the four eigenvalues km which vary both
in space and in time.

We use a second order Taylor expansion. In this 2D problem, least squares extrapolation is used instead of Lagrange
extrapolation due to the stability issues mentioned in Section 2.6. We take the domain as a square X = (�0.5,1) � (�0.5,1) or
a disk X = {(x, y): x2 + y2 < 0.5}. The density errors are listed in Tables 3.8 and 3.9. The designed third order accuracy is
.7
f the 2D Burgers equation (3.16). Dx = 2/Nx, Dy = 2/Ny, t = 0.15.

Ny On a square On a disk

L1 error Order L1 error Order L1 error Order L1 error Order

1.55E�04 9.86E�03 1.10E�04 1.77E�03
1.06E�05 3.87 1.80E�03 2.46 7.24E�06 3.93 4.06E�04 2.12
4.93E�07 4.43 2.38E�04 2.91 4.65E�07 3.96 4.77E�05 3.09
3.47E�08 3.83 2.83E�05 3.08 3.63E�08 3.68 6.04E�06 2.98
2.72E�09 3.67 2.85E�06 3.31 4.10E�09 3.15 9.45E�07 2.68
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Fig. 3.6. 2D Burgers equation (3.16). Dx = Dy = 1/40. Cut along the diagonal. Solid line: exact solution; symbols: numerical solution.

S. Tan, C.-W. Shu / Journal of Computational Physics 229 (2010) 8144–8166 8163
achieved for this fully nonlinear problem. Both tables also contain additional computational cost due to our boundary
treatment. We can see that our high order boundary treatment could be expensive, especially on a coarse mesh. In fact, for
each ghost point, we have to solve three 4 � 4 linear systems or 5 � 4 linear least squares problems with right-hand side
vectors requiring several numerical differentiations, which could be expensive showed by the 2D wave example.
Example 8. We are most interested in applying our method to the solid wall boundary conditions (u,v) � n = 0, when the wall
is not aligned with the grid and can be curved. Our first example of this kind is the double Mach reflection problem [19]. This
problem is initialized by sending a horizontally moving shock into a wedge inclined by a 30� angle. In order to impose the
solid wall condition by the reflection technique, people usually solve an equivalent problem that puts the solid wall horizon-
tal and puts the shock 60� angle inclined to the wall, see for example [8] and [15]. Another way to avoid the trouble of impos-
ing boundary conditions is to use a multidomain WENO method [14].

With the use of our method, we are able to solve the original problem with a uniform mesh in a single domain. The
computational domain is shown in Fig. 3.7(a), together with some of the grid points near the wall which indicate that the
wall is not aligned with the grid. Initially a right-moving Mach 10 shock is positioned at (0,0) making an angle of 90� with the
Table 3.8
Density errors and cost due to boundary treatment (in terms of ratio between the CPU time of boundary treatment and the total CPU time) of the vortex
evolution problem on a square. The vortex is initially positioned at (0,0). Dx = 1.5/N and t = 1.

Nx � Ny L1 error Order L1 error Order Cost

40 � 40 3.41E�06 1.81E�05 0.56
80 � 80 2.38E�07 3.84 1.86E�06 3.28 0.40
160 � 160 2.08E�08 3.52 1.83E�07 3.34 0.25
320 � 320 2.40E�09 3.11 1.97E�08 3.22 0.14



Table 3.9
Density errors and cost due to boundary treatment (in terms of ratio between the CPU time of boundary treatment and the total CPU time) of the vortex
evolution problem on a disk. The vortex is initially positioned at (0.3, 0.3). Dx = 2/N and t = 0.1.

Nx � Ny L1 error Order L1 error Order Cost

80 � 80 1.21E�07 2.29E�05 0.56
160 � 160 4.91E�09 4.62 1.29E�06 4.15 0.54
320 � 320 4.01E�10 3.61 1.27E�07 3.34 0.45
640 � 640 4.32E�11 3.21 1.60E�08 2.99 0.32

Fig. 3.7. Left: The computational domain (solid line) of the double Mach reflection problem. The dashed line indicates the computational domain used in [8]
and [15]. The square points indicate some of the grid points near the wall. Illustrative graph, not to scale. Right: Density contour of double Mach reflection,
30 contours from 1.731 to 20.92. Dx ¼ Dy ¼ 1

320.

Fig. 3.8. Density contours of double Mach reflection, 30 contours from 1.731 to 20.92. Zoomed-in near the double Mach stem. The plots in the left column
are rotated and translated for comparison.
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Fig. 3.9. Physical domain of flow past a cylinder. The square points indicate some of the grid points near the cylinder. Illustrative sketch, not to scale.
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x-axis. At y = 0, the exact postshock condition is imposed. At the top boundary y ¼ 23
12þ

ffiffi
3
p

2 , the flow values are set to describe
the exact motion of the Mach 10 shock. At the wall, we use a second order Taylor expansion with the inverse Lax-Wendroff
procedure and the WENO type extrapolation. Fig. 3.7(b) shows the density contour on a mesh with Dx ¼ Dy ¼ 1

320. A zoomed-
in region near the double Mach stem is shown in Fig. 3.8(a). We rotate and translate the region for ease of comparison. In
Fig. 3.8(b), we show the result of the regular fifth order WENO scheme for the equivalent problem with a regular reflective
boundary condition on a mesh with a comparable size. Figs. 3.8(c) and 3.8(d) show the density contours on a refined mesh.
We can see that the results of our boundary treatment are very similar to those obtained by the reflection technique. The
slight difference comes perhaps from the fact we impose the no-penetration condition strongly while the reflection
technique imposes it weakly.
Example 9. Our final example involves a curved wall which is a circular cylinder of unit radius positioned at the origin on a
x–y plane. The problem is initialized by a Mach 3 flow moving toward the cylinder from the left. In order to impose the solid
wall boundary condition at the surface of the cylinder by the reflection technique, a particular mapping from the unit square
to the physical domain is used in [8]. Using our method, we are able to solve this problem directly in the physical domain,
which is shown in Fig. 3.9, together with some of the grid points near the cylinder which indicate the wall cuts the grid in an
arbitrary fashion. Our computational domain is the upper half of the physical domain, due to the symmetry of this problem.
At y = 0, the reflection technique is used. At the left inflow boundary x = �3, the uniform far-field data is imposed. At the top
boundary y = 6 and the right boundary x = 0, constant extrapolation is used because of the hyperbolic nature of this problem.
X

Y

-3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

Fig. 3.10. Pressure contour of flow past a cylinder, 20 contours from 2 to 15.
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A second order Taylor expansion with the inverse Lax-Wendroff procedure and the WENO type extrapolation is used at the
surface of the cylinder. Notice that we impose the no-penetration condition strongly. Thus we should modify the initial con-
dition so that it is compatible with the solid wall condition. The pressure contour is shown in Fig. 3.10(a) with Dx ¼ Dy ¼ 1

20
and in Fig. 3.10(b) with Dx ¼ Dy ¼ 1

40. We can see the bow shock is well-captured by our method.
4. Concluding remarks

In this paper, we develop a high order numerical boundary condition for solving hyperbolic conservation laws with finite
difference methods. It is based on a Cartesian mesh, which is very challenging for boundary treatment because of the wide
stencil of the interior scheme and the fact that the physical boundary is not necessarily aligned with the mesh. Our method
consists of the inverse Lax-Wendroff type procedure for inflow boundary conditions and extrapolation for outflow boundary
conditions. The idea of the inverse Lax-Wendroff type procedure comes from the original Lax-Wendroff scheme. We repeat-
edly utilize the PDE to write the normal derivatives of U in terms of the time derivatives and tangential derivatives of U, both
of which are known on the inflow boundary. At the outflow boundary, we use Lagrange extrapolation or least squares extrap-
olation if the solution is smooth, or WENO type extrapolation if a shock is close to the boundary. A variety of numerical
examples illustrate that our method is high order accurate and is capable of treating shocks going through the boundaries.
Moreover, our method performs well when applied to the solid wall boundary conditions. The additional computational cost
of our boundary treatment is negligible for one-dimensional problems. However, it could be a significant portion of the total
computational cost for solving two-dimensional Euler equations due to the extensive numerical differentiation involved.

We have shown the linear stability of the semi-discrete scheme for one-dimensional scalar problems. Our method seems
to be stable for one-dimensional examples in our numerical experiments. In two-dimensional examples with smooth solu-
tions, a mild instability is discovered at subsonic outflow boundaries. This instability results from high order Lagrange
extrapolation. Least squares extrapolation is used instead to stabilize the scheme in our numerical tests. To completely
understand the mechanism of the instability caused by extrapolation, a GKS analysis for 2D problems should be done in
the future. The GKS theory can also help us construct a stable scheme. The methodology can be applied in three dimensions
straightforwardly. However, the algebra will be more heavy, and it remains to be seen what the ratio of the computational
cost for such boundary treatment over that for the inner scheme would be.
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